GATE Chemical Engineering Syllabus:
Section 1: Engineering Mathematics
Linear Algebra: Matrix algebra, Systems of linear equations,
Eigen values and eigenvectors.
Calculus: Functions of single variable, Limit, continuity
and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper
integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient,
Divergence and Curl, Vector identities, Directional derivatives, Line, Surface
and Volume integrals, Stokes, Gauss and Green’s theorems.
GATE 2020 Notification PDF Download
Direct Link to Apply for GATE 2020
Download GATE Study Materials PDF
Download GATE Previous Years Question Paper
Check GATE Syllabus of Other Branches
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.
Complex variables: Complex number, polar form of complex number,
triangle inequality.
Probability and Statistics: Definitions of
probability and sampling theorems, Conditional probability, Mean, median,
mode and standard deviation, Random variables, Poisson, Normal and Binomial
distributions, Linear regression analysis.
Numerical Methods: Numerical solutions of linear and non-linear
algebraic equations. Integration by trapezoidal and Simpson’s rule. Single and
multi-step methods for numerical solution of differential equations.
Section 2: Process Calculations and Thermodynamics
Steady
and unsteady state mass and energy balances including multiphase, multi-
component, reacting and non-reacting systems. Use of tie components; recycle,
bypass and purge calculations; Gibb’s phase rule and degree of freedom
analysis.
First
and Second laws of thermodynamics. Applications of first law to close and open
systems. Second law and Entropy. Thermodynamic properties of pure substances:
Equation of State and residual properties, properties of mixtures: partial
molar properties, fugacity, excess properties and activity coefficients; phase
equilibria: predicting VLE of systems; chemical reaction equilibrium.
Section 3: Fluid Mechanics and Mechanical Operations
Fluid
statics, Newtonian and non-Newtonian fluids, shell-balances including
differential form of Bernoulli equation and energy balance, Macroscopic
friction factors, dimensional analysis and similitude, flow through pipeline
systems, flow meters, pumps and compressors, elementary boundary layer theory,
flow past immersed bodies including packed and fluidized beds, Turbulent flow:
fluctuating velocity, universal velocity profile and pressure drop.
Particle
size and shape, particle size distribution, size reduction and classification
of solid particles; free and hindered settling; centrifuge and cyclones;
thickening and classification, filtration, agitation and mixing; conveying of
solids.
Section 4: Heat Transfer
Steady and unsteady heat conduction, convection and radiation,
thermal boundary layer and heat transfer coefficients, boiling, condensation and
evaporation; types of heat exchangers and evaporators and their process
calculations. Design of double pipe, shell and tube heat exchangers, and single
and multiple effect evaporators.
Section 5: Mass Transfer
Fick’s
laws, molecular diffusion in fluids, mass transfer coefficients, film,
penetration and surface renewal theories; momentum, heat and mass transfer
analogies; stage-wise and continuous contacting and stage efficiencies; HTU
& NTU concepts; design and operation of equipment for distillation,
absorption, leaching, liquid-liquid extraction, drying, humidification,
dehumidification and adsorption.
Section 6: Chemical Reaction Engineering
Theories of reaction rates; kinetics of homogeneous
reactions, interpretation of kinetic data, single and multiple reactions in
ideal reactors, non-ideal reactors; residence time distribution, single
parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic
reactions; diffusion effects in catalysis.
Section 7: Instrumentation and Process Control
Measurement
of process variables; sensors, transducers and their dynamics, process modeling
and linearization, transfer functions and dynamic responses of various systems,
systems with inverse response, process reaction curve, controller modes (P, PI,
and PID); control valves; analysis of closed loop systems including stability,
frequency response, controller tuning, cascade and feed forward control.
Section 8: Plant Design and Economics
Principles
of process economics and cost estimation including depreciation and total
annualized cost, cost indices, rate of return, payback period, discounted cash flow,
optimization in process design and sizing of chemical engineering equipments
such as compressors, heat exchangers, multistage contactors.
Section 9: Chemical Technology
Inorganic chemical industries (sulfuric acid, phosphoric
acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural
products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries
(polyethylene, polypropylene, PVC and polyester synthetic fibers).
0 Comments